
Embedding Community-Specific Resource
Managers in General-Purpose Grid Infrastructure

Ian Foster1,2 Kate Keahey1 Carl Kesselman3 Erwin Laure4
Miron Livny5 Stuart Martin1 Mats Rynge3 Gurmeet Singh3

1 Math & Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
2 Department of Computer Science, The University of Chicago, Chicago, IL 60615, U.S.A.

3 Information Sciences Institute, U. Southern California, Marina del Rey, CA 90292, U.S.A.
 4 CERN, CH-1211 Geneva 23, Switzerland.

5 Department of Computer Science, University of Wisconsin, Madison, WI 53706-1685, U.S.A.

Abstract
An important mode of Grid operation is one in which a community or (as we call it here)
a virtual organization (VO) negotiates an allocation from a resource provider and then
disperses that allocation across its members according to VO policy. Implementing this
model requires that a VO be able to deploy and operate its own resource management
services within the Grid. We argue that a mechanism that allows for the creation, and
subsequent monitoring and control, of managed computations provides a simple yet
flexible solution to this requirement. We present an architectural framework that
addresses the security, policy specification, and policy enforcement concerns that arise in
this context. We also describe an implementation based on Globus Toolkit and Condor
components, and present performance results.

1 Introduction
The emergence of Grids has seen the creation of a uniform infrastructure for sharing
resources across organizational boundaries. As production deployments become more
common and user communities become larger, usage patterns are shifting towards the
creation of multi-purpose Grids whose resources are consumed by one or more virtual
organizations (VOs) [13]. Requirements for scalability and flexibility in management
make it important that resource providers be able to allocate resources (e.g., nodes on a
compute cluster, disk space on a storage system, or CPU fraction on a single processor)
to VOs rather than to individual users. The VO may then disperse its assigned resources
among its members as it sees fit: for example, giving “analysis” activities higher priority
than “simulations,” or project leaders greater access rights than students. In effect, the
resource provider delegates to a VO (or, more specifically, to VO administrators) the
right to control the use of a resource allocation by members of that VO.

In such scenarios, we face the challenge of providing mechanisms by which the VO can
manage its allocated resources: what VO members are allowed to use them, what tasks
should be assigned to the available resources, and when should requested tasks be
performed. The issues associated with VO resource management are similar to those that
must be solved by each individual resource provider. However, the VO also has unique
characteristics, due to its dynamic creation, adaptation over time, need to layer on an
existing resource management framework and the need to federate decision making

 1

across multiple resources in a scalable way. These unique characteristics dictate that
specialized mechanisms are required.

We are concerned here with identifying general mechanisms for deploying VO
management solutions as part of VO establishment, for monitoring and controlling the
execution of those mechanisms, and for managing interactions between VO decision
making processes and the resources that they control. As we explain in Section 2, these
mechanisms may be required to provide for the dynamic deployment of VO-specific
components, the allocation of resources to those components to meet quality of service
requirements, and the restart of those components following various forms of failure.

We propose an architectural framework and an implementation approach that address
these requirements. The framework is based on a construct that we call the managed
computation, a computational activity that a client can create with specified persistence
properties and resource constraints, and then monitor and manage, via operations defined
within a managed computation factory interface (Section 3). The framework also
addresses security issues relating to delegation and credential management (Section 4).

Our implementation approach uses the Globus Toolkit version 4 (GT4) Web Services
(WS) Grid Resource Allocation and Management (GRAM) service [9, 11] and the
Condor resource manager [18, 19] within a service-oriented architecture, with Condor
providing local monitoring and management functions and GRAM providing network
access, security, policy callouts, and other related functions (Section 5).

We show in Section 6 how the managed computation construct can be used to implement
a use case in which a “VO resource manager” deployed as a managed computation on a
“service node” submits jobs to a “cluster,” with the resources consumed by the VO
resource manager constrained. Finally, we report on initial experimental results that
evaluate our implementation from the perspectives of both performance and management
effectiveness (Section 7), discuss related work (Section 8), and conclude (Section 9).

We summarize the principal contributions of this work as follows:

! A resource management architecture that allows for the dynamic deployment and
subsequent management of VO-specific resource management logic, while
addressing security, policy, and quality-of-service enforcement concerns.

! An implementation approach that exploits features of GT4 and Condor.

! Performance experiments that demonstrate that GT4 plus Condor can provide for
effective enforcement of resource guarantees.

2 Resource Management for Virtual Organizations
Virtual organizations may be created and destroyed, with lifetimes varying from minutes
to years. A VO’s membership may vary during its lifetime, as may the resources
available to its members to accomplish their work. These dynamics, as well as normal
evolution of mission, priorities and requirements, mean that VO-level policy with respect
to membership and resource consumption will inevitably change over time.

Such VO dynamics means that it is impractical for a VO-level resource management
strategy to require the modification of policy at individual resource providers (for

 2

example, by creating VO-specific task submission queues or creating local user accounts)
each time a VO adds a member or alters its operational policy. Such an approach would
suffer from poor responsiveness and scalability, and would also preclude the federated
management of multiple VO resources.

For these reasons, we advocate an alternative approach based on a separation of concerns
between intra-VO resource management policy (e.g., “Ann has higher priority than Joe”)
and resource provider policy towards a VO (e.g., “VO A has 30% of my CPU”). In this
approach, resource providers are concerned solely with enforcing policies regarding VO
access; intra-VO scheduling decisions are handled by separate VO-specific resource
management infrastructures or VO resource managers (VORMs). Each VORM is
responsible for arbitrating among requests issued by the users of its VO. Thus, we arrive
at a two-level resource management scheme. End users issue requests to VORM(s),
requesting that tasks be performed. If and when the VO policy indicates that a request is
allowable, a VORM forwards the request to an appropriate resource provider for
execution against the VO’s allocation.

The dynamic nature of VOs dictates that we be able to deploy and manage such VORMs
on demand with no human intervention required. Parsimony in architectural features
dictates that the VORM be treated identically to any other VO task. Thus, from the
resource provider perspective, a VORM should be initiated and managed using standard
resource management interfaces. The resource used by a VORM may be constrained, the
VORM must be managed, and the VORM may be subject to policy enforcement, just like
any other task managed by the resource. The interaction between VORM and resource
provider should also not be specialized: a VORM should initiate VO tasks using the same
standard resource management interfaces used to create the VORM. However, from the
perspective of its VO, a VORM fulfills a vital infrastructure function and hence (in
contrast to other VO tasks) it is important that the VORM be robust to transient failures
so that they can provide a persistent capability to the VO.

The actual function of a VORM may be highly specialized to a particular VO, or it may
provide generic behaviors such as simple batch scheduling. Our primary concern is not
VORM behavior, but rather the creation of standard mechanisms by which these
behaviors can be deployed onto an existing Grid-wide resource management framework.

3 The Managed Computation
We now turn to the question as to how to provide uniform mechanisms by which a VO
can deploy and operate a VO specific resource management infrastructure. VO-specific
management environments deployed in current production Grids are based on
customized, hand-crafted deployments that cannot easily be ported to other environments.
Furthermore, because they do not use common underlying Grid mechanisms, they cannot
respond easily to the dynamics of the VO lifecycle. These considerations motivate the
approach considered here, which is to use established Grid infrastructure mechanisms to
address VO resource management requirements.

With this goal in mind, we propose to meet the requirements outlined in Section 2 via a
single abstraction that we call a managed computation. A managed computation is one
that we can start, stop, terminate, monitor, and/or control. It adheres to, and runs within, a

 3

local resource security, auditing, and accounting infrastructure. It is subject to policy
enforcement, including resource provisioning agreements. As we discuss below, we
define these management functions in terms of a managed computation factory interface
that defines operations that a client can use to request the creation, monitoring, and
control of managed computations. A resource manager controls the managed
computation and enforces site policies. As we will see in Section 5, the existing widely
used GRAM interface already implements a managed computation factory interface, and
thus implementing this interface is straightforward.
This managed computation construct can be applied pervasively to the design of the VO
resource management environment discussed above:

! A VORM runs on a physical resource provided by a resource owner. To control the
resource consumption, the VORM is structured as a computation managed by the
resource provider. As a managed computation, the VORM may also request that the
manager ensure that it is restarted in the case of failure.

! The VORM accepts requests from its VO’s user community. As it services these
request, the VORM may need access to additional functions, such as job staging, data
movement, and job submission. These functions can be provided to the community as
additional managed computations.

! As part of its operations, the VORM may request that operations take place on other
resources. Such requests can be structured as requests to other entities to create new
managed computations, such as compute tasks on a cluster.

The important point to take away from this discussion is that the entire VO resource
management architecture can be rendered in terms of the creation and operation of
managed computations for different purposes. There is no need to introduce any other
special architectural or implementation concepts. In brief:

! We view all computations as managed regardless of the resource on which they
execute, be it (for example) a “service node” (for a VORM) or a “compute cluster”
(for a task submitted via a VORM). Indeed, in the managed computation model, there
is no distinction between the two.

! We use standard interfaces to managed computation factories to request the creation
of managed computations and to control those computations subsequently, regardless
of whether those computations are VORMS to be created for VOs or jobs to be run on
computational clusters on behalf of a VORM (acting on behalf of its VO’s users).

Managed computations are created by a class of network service that is generically
referred to as a managed computation factory. As with any network service, the managed
computation factory’s behavior is defined completely in terms of its interface. This
interface defines operations that a client can use to negotiate the following capabilities:

! Deployment: Creation of a managed computation on a computational resource.

! Provisioning: Specification of how many resources may be consumed by the
computation, and in what way.

 4

! Persistence: Specification of what to do if the environment in which the computation
is executing, or the computation itself, fails.

! Monitoring: Client monitoring of managed computations.

! Management: Client control over computation lifetime.

A computation created by a managed computation factory may itself define a network
interface and thus operate as a service, in which case we may refer to it as a managed
service. In addition, a service created by a managed computation factory may itself be a
managed computation factory. Indeed, this is a good way to think about a VORM, if its
function is (as is often the case) to create computations on other resources for its VO.

Figure 1 illustrates the major components of a managed computation factory:

! The factory service proper provides the interface to the network, formatting and
exchanging messages, and implements the overall control of managed computation
factory function. The interface to the managed computation factory defines the
functions available to a management client. These functions include the ability to
create, configure, and destroy a managed computation.

! A policy module determines authorization, resource constraints, and persistence
policy. In particular, the policy module is used to determine if a managed
computation request (e.g., to create a VORM) is consistent with the operational
policy of the resource provider that is to host the managed computation.

! A resource manager. This resource-specific management system is responsible for
creating the managed computation, enforcing persistence and policy, and
implementing management operations such as service termination or suspension. The
managed computation factory interacts with the resource manager via manager-
specific commands and protocols.

Authorization &
configuration
policies

Managed
Computation

Factory
Resource
Manager

Management
Clients

Resource
manager

commands

(Managed computations)

Monitoring &
enforcement

Managed
Service
Clients

Managed
computation

 factory
functions

Service-
specific

functions
Figure 1: The managed computation factory

4 Security Issues in VO Scheduling
Five entities or principals can potentially participate when a VO user submits a request to
a VORM to run a task on their behalf on some computational resource:

1. the VO user who submits tasks to be scheduled,

2. the VORM resource provider who hosts the VORM,

3. the VO administrator who initiates the creation and operation of the VORM,

 5

4. the task resource provider who hosts the tasks requested by the VO user, and

5. the VO resource consumer who submits the job to the task resource provider,

Techniques for establishing the identity of participants in a distributed Grid environment
such as the Grid security infrastructure [12] are well established and widely deployed [4].
Approaches by which finer grain policy decisions may be made via attribute assertions
[16] are becoming more widespread [5, 27]. The use of attributes (or roles) in addition to
identities can provide for greater flexibility and scalability in the resulting environment,
and may be especially useful in identifying VO users as well as distinguishing which
members may fill roles such as VO administrator and resource consumer.

A VORM is initiated by a VO administrator. The VO administrator must (mutually)
authenticate with the VORM resource provider, providing any attributes necessary to
identify the user in the VO administrator role. (Because the allocation of resources to the
VO is an agreement between the resource provider and the VO, it is ultimately up to the
resource provider to determine which attributes may be required.) Once authenticated, the
VO administrator can initiate a managed task. This task runs with the rights of the VO
administrator, the most important of which is the ability to consume resources allocated
to the VO on the scheduler resource provider.

In order to submit a task to a VORM, VO users must identify themselves to the VORM.
The same mutual authentication methods used for authenticating the VO administrator to
the resource provider may be used for this purpose. Based on this authentication and any
associated attributes asserted by the user or other sources, the VORM may apply policy
to determine if the requestor is in fact currently a VO member, and if so, what scheduling
policy should be assigned to the requested task.

If policy indicates that the VO user’s task request should be executed, then task
submission to the task resource provider can occur via one of two methods:

1. The VORM can use the managed computation creation interfaces to cause the
schedulable task to execute on a target resource.

2. The VORM can instead not submit the task to the target resource itself, but rather
grant the user permission to submit the task directly.

In the first case, the VORM submits the task under the identity of a VO resource
consumer using credentials provided to the VORM when it was created. (See Section 5.1
for how this task can be done using the GT4 GRAM service.) The advantage of this
approach is that VO membership is determined only by the VORM; members may be
added or deleted without involving the target resource provider. A disadvantage is that
the use of VO resource consumer credentials can complicate data staging operations in
which data owned by the submitting user is transferred to the target resource. In non-VO
deployments, the user simply delegates to the target resource user credentials that may be
used to access remote data. However, if (as here) the target resource does not have the
user’s credentials, then alternative mechanisms are needed.

In practice, the resource provider may require the identity of the requesting user for
auditing purposes, or to apply additional policy such as black list enforcement. For this
reason, the resource provider may require that the VORM provide the identity of the
original user as part of the request.

 6

In the second approach listed above, the VORM acts in a manner similar to a community
authorization service [22] or SHARP [15], providing the user with a cryptographically
signed credential authorizing the user to consume resources on the task resource provider
on behalf of the VO. Because the user must authenticate to the resource directly, this
approach may be desirable when it is important to know the identity of the requesting VO
user and the resource provider does not trust the VO to report this identity accurately.
This approach also eliminates data staging complexities. However, this approach places a
greater burden on submitting users, and precludes certain scheduling strategies, such as
those in which the VORM queues jobs or manages submitted jobs.

5 A Managed Computation Framework Implementation
We describe here how a managed computation framework that meets our requirements
can be implemented by using a combination of the GT4 GRAM service and Condor
resource manager. In brief, we use GT4 GRAM as the managed computation factory
service and Condor as the local resource manager.

5.1 GT4 GRAM Service as a Factory
GT4 WS GRAM is a Web Service that implements operations for creating—and
subsequently monitoring and controlling—computations specified by a Job Description
Schema. The interface uses operations standardized in the Web Services Resource
Framework and WS-Notification [10] specifications for such purposes as monitoring,
notification, and lifetime management. In addition, a GGF-standard authorization callout
allows for flexible authorization policy [29]. GRAM includes the use of a delegation
service [28], which allows the initiator of a managed computation to enable the resulting
computation to perform actions on behalf of the initiator or any other principal that has
provided delegated credentials.

GT4 WS GRAM applies policy and then dispatches approved requests to a local resource
management system for local scheduling and policy enforcement. A wide range of
resource managers, such as PBS, SGE, LSF, or Condor can be used, depending on the
target environment. In a clustered environment, these managers typically operate in a
space-shared mode, providing tasks with exclusive access to a resource. However,
GRAM can also be used to deploy and manage computations onto non-space shared
systems. In such systems, GRAM is often configured to use a best effort resource
management strategy (GRAM’s “fork gatekeeper”) by which jobs are simply forked and
scheduled by the operating system. However, shared resources can also be managed by a
resource manager to provide more fine-grained policy and enforcement. We explore here
the use of Condor as a local resource manager. Thus, while GRAM is sometimes viewed
simply as a “job submission service,” i.e., as a service for submitting jobs to batch
schedulers, it more properly viewed as a general-purpose managed computation factory.

5.2 Condor as a Resource Manager
Condor provides mechanisms for scheduling tasks onto a pool of resources. It takes
descriptions of required and offered resources and schedules them via a matchmaking
mechanism [23]. Condor can be configured to offer both space sharing resource
management in which only one task is matched to a resource at a time, or by using a

 7

virtual processor abstraction be configured to enable multiple tasks to be scheduled to a
processor. In both cases, tasks initiated by Condor are monitored to ensure that policy
requirements of the resource provider are enforced on a per (virtual) machine basis.

When exclusive access is offered, the policy tends to be simple, stating when a task can
be mapped to the resource, how long it can run, and under what conditions the task may
be terminated. The situation tends to be more complex in the time shared mode, when
more then one task can be allocated to a resource. In this case the policy may specify both
the maximum number of managed computations that can execute at one time and the
maximum load that any one computation can apply to the node on which it executes. A
request to create a computation is delayed or denied if the maximum number of
computations has been reached; a computation that generates more than the maximum
load is suspended or terminated. (See Section 7 for more details on the configuration.)

5.3 Persistence
Infrastructure services are those services that are critical to the operation of an
organization. For example, GRAM may be critical to a resource provider, and a VORM
to a VO. In the present context, we need to be able to ensure that the managed
computation factory (GRAM), associated resource manager (e.g., Condor), and any
managed computations (e.g., VORMs) persist beyond failure.

Both GT4 WS GRAM and Condor are themselves fault-tolerant, meaning that they can
reinitialize their state from stable storage when restarted. Thus, if the platform on which
GRAM and Condor execute should fail, both systems can be restarted and will reconnect
themselves to all their active and submitted tasks. Beyond these capabilities, we need the
ability to cause infrastructure services being managed by the resource manager to be
restarted. Condor provides this capability, However, restart places responsibility on the
managed computation, requiring it to checkpoint its state; thus the Condor mechanism
cannot be applied blindly. In addition, persistence properties may be driven by policy
statements that specify, for example, how often a service should be restarted after specific
types of failures. Thus, we enable automatic restart for a managed computation only if
requested by including a PERSISTENCE option in the job description provided to
GRAM. This request is passed on to the local resource manager.

5.4 Implementing VORMs
One reason for deploying a VORM is to enable more scalable mechanisms for enforcing
VO policy. However, a second motivation can be to create a different VO-specific
resource management regime within the general-purpose Grid infrastructure. We
illustrate this point by describing two alternative VO scheduling implementations. Of
course, there are many other possibilities beyond the two described here.

5.4.1 A Condor-Based VORM
Condor provides a scheduling regime based on a ranked matching of task requirements to
resource capabilities. At the heart of this system is a scheduling deamon (schedd) to
which a user submits job requests, which are subsequently matched to, and executed on
appropriate execution resources. Condor includes a version of schedd, called Condor-
C, that can accept jobs from other schedds and be deployed dynamically [26].

 8

To realize this scenario, we use our managed computation factory service to initiate a
schedd, configured to register into a VO-wide Condor pool. A VO user can then submit
a job to their local Condor pool, and the job will flow from that pool to the dynamically
deployed schedd using Condor-C. The schedd submits the job to the computational
resource for eventual execution using existing Condor mechanisms for accessing GRAM-
mediated resources. We explore the performance of this scenario in Section 7.

Note that as we also use Condor in our managed computation factory service
implementation, this use of Condor as a VORM means that we have two separate Condor
deployments that are used in distinct ways. First, as described in Section 5.2, we use
Condor as a resource manager for managed computations, such as VORMs. Second, we
use Condor as a VORM implementation. The latter completely separate Condor
deployment has no connection whatsoever with the Condor used as resource manager.

5.4.2 A GRAM-Based VORM
An alternative approach to VO resource management uses a GRAM-style VORM. Here,
we use the managed computation interface to deploy a new GRAM service, which we
configure according to VO policy requirements. The result is a management service with
a GRAM interface that the VO user can use to submit jobs. The VO GRAM service can
then in turn use a GRAM interface to consume resources offered by the target resource
provider. This embedded GRAM approach has the advantage that VO applications
written to the GRAM interface can operate in the VO environment without modification:
in effect, what we achieve is a transparent virtualization of the underlying infrastructure
into the VO space.

6 Deployment Scenarios
The use of standard remote task deployment and management interfaces for deployment
of VORMs and for connecting VORMs to underlying resource providers gives us great
flexibility with respect to where VORMs and user tasks are placed. For example, we
often wish to place a VORM that is associated with a single target resource near that
resource—perhaps on a service node (or, as it sometime called, a head node) associated
with a computational cluster, or even on the target resource. In other configurations, a
VORM may be associated with (and thus may select from among) more than one target
resource. In such cases, we may wish to either collocate the VORM with one target
resource, or place it on yet another resource that is “near” the target resources.

The beauty of the service-oriented approach is that no changes are required to our system
implementation to accommodate these different configurations. Indeed, our use of
standard interfaces means that a VORM need not create managed computations on an
actual piece of physical hardware, but can instead interact with another nested VORM.
Thus, a VO can blend strategies: collocating VORMs close to the target resource for
reasons of performance and robustness, and using a higher-level VORM to select
between alternative resources.

 9

Client-side

We show in Figure 2 one possible scenario in which we have one managed computation
factory, GRAM-1, used to create VORMs, and two managed computation factories,
GRAM-2 and GRAM-3, used to create computational tasks on attached clusters. The
three GRAMs may be located on the same or different computer: if GRAM-1 is located
on a service node associated with a cluster, and GRAM-2 and GRAM-3 provide access to
that cluster, then the three GRAMs may be located on the same computer. Regardless of
the precise configuration, the interactions proceed as follows:

1. The VO administrator uses the delegation service interface to make delegated
credentials for the VO available to the GRAM services managing the service node
and the computational cluster.

2. The VO administrator uses the GRAM interface to request that a VORM be created
on the service node. This request may specify desired restart policy, and includes a
reference to the delegation service on the compute nodes to which the VORM will be
submitting jobs. The VO administrator is returned a handle with which it can monitor
and control the new VORM. The service node resource manager enforces site policies
relating to resource consumption (e.g., how much CPU and memory the VORM may
consume) and may restart the VORM if the node fails and suspend or kill the VORM
if site policies concerning resource consumption are violated.

3. A VO user authenticates to the VORM using their own credentials and submits jobs
using a VORM-specific submission protocol such as Condor or GRAM. The VORM
is responsible for queuing the job.

VO
User

Cluster
Resource
Manager

GRAM-2

Cluster
Resource
Manager

GRAM-3

Notes:

• VO admin delegates credentials to be used by downstream VO services.
• VO admin starts the required services.
• The scheduler registers itself to the upstream scheduler
• VO jobs comes in directly from the upstream VO Users
• VO job gets forwarded to the appropriate resource using the VO credentials
• Computational job started for VO

 VORM Other Services

VO
Admin

.

Monitoring and control

Service Node
Resource
Manager

GRAM-1
Deleg Deleg

Service-side

VO
User

VO JobDeleg

VO Job

Figure 2: VORM deployment scenario with one “service node” and two remote compute clusters

 10

4. The VORM selects a job to execute and performs any setup that may be required,
such as staging files. Any activity that the VORM performs on the service node is
constrained by the policy enforced by the service node resource manager. Any
operations performed by the VORM on remote nodes is constrained by the resource
managers (if any) operating on those nodes.

5. The VORM uses GRAM to submit the VO job to the compute cluster. The job is
submitted with VO or user credentials, depending on local policy, and is executed
under a local account as determined by whatever mapping functions have been put in
place by the resource owner (e.g., mapfile, dynamic account creation). The VORM
uses the compute cluster’s delegation service to delegate credentials to the job.

7 Experimental Studies
We conducted experiments to evaluate the suitability of our architecture and
implementation when a VORM runs on a shared service node (or head node) that acts as
a submit point for an associated computational cluster. GT4 WS GRAM on the service
node provides two managed computation factories, one for computations on the service
node and one for computations on the associated cluster. As described above, Condor is
used as the resource manager for computations running on the service node. PBS is used
to manage computations running on the cluster.

We used a Condor-C scheduler [26] as the VORM, as described in Section 5.2; this
component is deployed dynamically using the GT4 GRAM computation factory
interface. Note that this Condor-C VORM is completely independent of the Condor
environment used to control the managed computations on the service node. We ran
experiments on dual 2.2Ghz Intel Xeon machines running Red Hat 9 and Debian Sarge.
Each machine had 1 GB RAM and a gigabit network connection.

In order to understand the effectiveness of managed computations for VO resource
management, we measured how end-to-end VO job throughput varied with competing
load from other activities on the service node. Figure 3 summarizes the results of this
experiment, showing job throughput achieved by a Condor-C VORM process in both
managed and unmanaged scenarios, as it repeatedly executed a trivial job on the
computational cluster in the presence of increasing load. The load was caused by
“misbehaving” processes, i.e., processes responsible for contributing to system load in
excess of a prescribed limit. We see that, as expected, the performance in the unmanaged
case collapses as the number of misbehaving jobs increases. However, in the managed
cases we are able to prevent complete performance collapse by applying different
management policies.

We experimented with two such policies. The first policy, applied to all computations on
the service node, was as follows: “if the system load exceeds 10 and a managed
computation’s contribution to this load exceeds a prescribed threshold [a load of 3 for
these experiments], then suspend the computation until the load is below the threshold”.
As can be seen in the figure while this policy certainly introduced some overhead, it also
lead to a much more graceful performance degradation. A better policy proved to be to
additionally impose a penalty of at least 10 minutes suspension on all misbehaving

 11

processes. In this case, the degradation was much better controlled although still
observable as the load increased.

This shows that in practice the types of policy that can be applied – as well as the extent
to which they can be effective – will strongly depend on the tools used to enforce them.
In our case, a stricter policy compensated for the coarse-grain measurements used for
load calculation as well as coarse-grain enforcement mechanisms. We also note that these
mechanisms are not sufficient for tight levels of control: in the best case job throughput
rate varies from nine jobs per second to slightly less then five. Alternative local resource
managers such as hypervisor based solutions may be able to reduce this variability.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0 4 8 16 32 64 128
Misbehaving Service Processes (~load)

Unmanaged
Managed -- no penalty
Managed -- with penalty

Figure 3: Throughput for a Condor-C VORM under load, when managed and unmanaged

As a baseline, we can compare the results of the managed, end-to-end solution with the
throughput achieved when the same trivial jobs are submitted directly to a GRAM-
mediated computational factory on the cluster. In this case, we see throughputs of
approximately 10 jobs per minute. We conclude that the use of VORMs as managed
computations need not negatively impact the throughput performance of the overall job
management solution. In addition, we observe that the proposed solution can be extended
easily to support multiple service nodes and multiple computational factories for
computational resources. Hence, deployments can be engineered that can provide
significantly higher levels of performance. (GT4 GRAM performance can also be
improved: in a somewhat different configuration, we achieve 70 jobs per minute.)

8 Related Work
Many distributed system architectures and deployments separate management concerns
between resource provider and VO in various ways. The concept of a “resource broker”
is old and widespread [2, 20, 21]. Dumitrescu and Foster [8] describe and evaluate an
architecture in which VO resource managers interact with resource providers on behalf of
VO users. However, they focus on VO resource management strategies, not the managed
service implementation issues considered here. Thain and Livny [26] use GRAM to
deploy Condor agents directly to computational nodes, an approach that can provide

 12

significant performance benefits [25]. This “glide in” technique can be viewed as a
special case of our more general approach.

At the interface and implementation level, PlanetLab [3] provides a programmatic
interface for allocating execution environments (“slices”) on distributed computers, but
not for managing the physical resources allocated to those environments or for starting or
managing computations in those environments (other than via SSH). InVigo [1] provides
for the managed deployment of virtual machines; however, the focus is on deploying
applications not VO services.

The Xenoserver design [14] addresses the deployment and management of services and,
as the authors point out, can be used to realize the concepts described here. Keahey et al.
[17] describe a virtual workspace abstraction that is yet more general than our managed
computation, supporting the configuration of arbitrary virtual machines. The GRAM
design described here has evolved from an early job submission interface [6], influenced
by thoughts on resource and service management [7].

As discussed in Section 4, capability-based systems such as CAS [22] and SHARP [15]
represent an alternative authorization approach, in which a client obtains a ticket from a
broker and then presents that ticket to a resource provider.

9 Summary and Next Steps
We have described an approach to deploying community-specific resource management
logic (“Virtual Organization Resource Managers,” or VORMs) within a distributed
computing infrastructure. Our approach addresses, at the architecture and implementation
levels, the security and management issues required for this deployment to occur in a
secure, robust, and performant manner.

From an architectural perspective, our approach has the advantage of being a pure
service-oriented architecture. Individual components can be composed easily into higher-
level components and configured into a wide variety of physical deployment strategies.
Thus, we can easily deploy VORMs onto arbitrary service nodes or onto cluster nodes,
create VORMs near or far from the resources to which they provide access, and build
VORMs that schedule across multiple computing resources.

Our implementation approach is also elegant. In particular, it has the advantage of
leveraging existing GT4 and Condor components unmodified, with the sole exception of
a job description extension to specify persistence. In addition, our implementation can
leverage the GT4 security implementation without modification, including GSI,
delegation service, and interfaces to SAML-based policy processing engines.

In future work, we wish to explore the use of virtual machine technology [24] to provide
finer-grained control over policy enforcement on managed computations. (While
Condor’s widespread use and ease of configuration are advantages for a resource
manager, the fact that it builds on traditional operating system mechanisms limits the
degree of control and policy enforcement it can apply to shared resources.) We will also
explore demand-driven provisioning of service nodes to meet user demand and support
for management of distributed services.

 13

Acknowledgments
We are grateful to fellow EGEE Design Team members for many helpful discussions on
these topics. This work was supported in part by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38, by
the National Science Foundation (NSF) under its NSF Middleware Initiative, and by the
European Commission program INFSO-RI-508833 through the EGEE project. Foster and
Kesselman are also co-founders of Univa Corporation.

References
1. Adabala, S., Chadha, V., Chawla, P., Figueiredo, R., Fortes, J., Krsul, I., Matsunaga,

A., Tsugawa, M., Zhang, J., Zhao, M., Zhu, L. and Zhu, X. From Virtualized
Resources to Virtual Computing Grids: The In-VIGO System. Future Generation
Computer Systems. 2004.

2. Aloisio, G. and Cafaro, M. Web-Based Access to the Grid Using the Grid Resource
Broker Portal. Concurrency and Computation: Practice and Experience, Special
Issue on Grid Computing Environments, 13-14. 2002.

3. Bavier, A., Bowman, M., Chun, B., Culler, D., Karlin, S., Muir, S., Peterson, L.,
Roscoe, T., Spalink, T. and Wawrzoniak, M., Operating System Support for
Planetary-Scale Services. 1st Symposium on Network Systems Design and
Implementation, 2004, 253-266.

4. Butler, R., Engert, D., Foster, I., Kesselman, C., Tuecke, S., Volmer, J. and Welch,
V. A National-Scale Authentication Infrastructure. IEEE Computer, 33 (12). 60-66.
2000.

5. Cornwall, L. and others Authentication and Authorization Mechanisms for Multi-
Domain Grid Environments. Journal of Grid Computing, 2 (4). 301-311. 2004.

6. Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W. and
Tuecke, S., A Resource Management Architecture for Metacomputing Systems. 4th
Workshop on Job Scheduling Strategies for Parallel Processing, 1998, Springer-
Verlag, 62-82.

7. Czajkowski, K., Foster, I. and Kesselman, C. Resource and Service Management.
The Grid: Blueprint for a New Computing Infrastructure (2nd Edition), 2004.

8. Dumitrescu, C. and Foster, I., Usage Policy-based CPU Sharing in Virtual
Organizations. 5th International Workshop in Grid Computing, 2004.

9. Foster, I., Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP
International Conference on Network and Parallel Computing, 2005, Springer-
Verlag LNCS 3779, 2-13.

10. Foster, I., Czajkowski, K., Ferguson, D., Frey, J., Graham, S., Maguire, T., Snelling,
D. and Tuecke, S. Modeling and Managing State in Distributed Systems: The Role of
OGSI and WSRF. Proceedings of the IEEE, 93 (3). 604-612. 2005.

11. Foster, I. and Kesselman, C. Globus: A Metacomputing Infrastructure Toolkit.
International Journal of Supercomputer Applications, 11 (2). 115-129. 1998.

12. Foster, I., Kesselman, C., Tsudik, G. and Tuecke, S., A Security Architecture for
Computational Grids. 5th ACM Conference on Computer and Communications
Security, 1998, 83-91.

 14

13. Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International Journal of Supercomputer
Applications, 15 (3). 200-222. 2001.

14. Fraser, K.A., Hand, S.M., Harris, T.L., Leslie, I.M. and Pratt, I.A. The Xenoserver
Computing Infrastructure. University of Cambridge Computer Laboratory, Technical
Report UCAM-CL-TR-552, 2003.

15. Fu, Y., Chase, J., Chun, B., Schwab, S. and Vahdat, A., SHARP: An Architecture for
Secure Resource Peering. 19th ACM Symposium on Operating Systems Principles,
2003.

16. Hughes, J. and Maler, E. Technical Overview of the OASIS Security Assertion
Markup Language (SAML) v1.1, http://www.oasis-open.org/committees/security,
2004.

17. Keahey, K., Doering, K. and Foster, I., From Sandbox to Playground: Dynamic
Virtual Environments in the Grid. 5th International Workshop in Grid Computing,
2004.

18. Litzkow, M., Livny, M. and Mutka, M. Condor - A Hunter of Idle Workstations.
Proc. 8th Intl Conf. on Distributed Computing Systems, 1988, 104-111.

19. Livny, M. High-Throughput Resource Management. Foster, I. and Kesselman, C.
eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann,
1999, 311-337.

20. Nahrstedt, K. and Smith, J.M. The QoS Broker. IEEE Multimedia, 2 (1). 53-67.
1995.

21. OMG Common Object Request Broker: Architecture and Specification. 1991.
22. Pearlman, L., Welch, V., Foster, I., Kesselman, C. and Tuecke, S., A Community

Authorization Service for Group Collaboration. IEEE 3rd International Workshop on
Policies for Distributed Systems and Networks, 2002.

23. Raman, R., Livny, M. and Solomon, M. Matchmaking: An Extensible Framework
for Distributed Resource Management. Cluster Computing: The Journal of Networks,
Software Tools and Applications, 2. 129-138. 1999.

24. Rosenblum, M. and Garfinkel, T. Virtual Machine Monitors: Current Technology
and Future Trends. IEEE Computer (May). 39-47. 2005.

25. Singh, G., Kesselman, C. and Deelman, E. Optimizing Grid-Based Workflow
Execution. Journal of Grid Computing (To appear).

26. Thain, D. and Livny, M. Building Reliable Clients and Services. The Grid:
Blueprint for a New Computing Infrastructure (2nd Edition), Morgan Kaufmann,
2004.

27. Welch, V. Globus Toolkit Version 4 Grid Security Infrastructure: A Standards
Perspective, 2004. http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-
Overview.pdf.

28. Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski, K., Gawor, J.,
Kesselman, C., Meder, S., Pearlman, L. and Tuecke, S., Security for Grid Services.
12th IEEE International Symposium on High Performance Distributed Computing,
2003.

29. Welch, V., Siebenlist, F., Meder, S. and Pearlman, L. Use of SAML for OGSA
Authorization. Global Grid Forum, Draft, 2003. www.globus.org/ogsa/security.

 15

http://www.oasis-open.org/committees/security
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf
http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf
http://www.globus.org/ogsa/security

The submitted manuscript has been created by the University of Chicago as
Operator of Argonne National Laboratory ("Argonne") under Contract No.
W-31-109-ENG-38 with the U.S. Department of Energy. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Government.

 16

